A Speed-Up Strategy for Finite Volume WENO Schemes for Hyperbolic Conservation Laws
نویسندگان
چکیده
In this paper, a speed-up strategy for finite volume WENO schemes is developed for solving hyperbolic conservation laws. It adopts p-adaptive like reconstruction, which automatically adjusts from fifth order WENO reconstruction to first order constant reconstruction when nearly constant solutions are detected by the undivided differences. The corresponding order of accuracy for the solutions is shown to be the same as obtained by original WENO schemes. The strategy is implemented with both WENO and mapped WENO schemes. Numerical examples in different space dimensions show that the strategy can reduce the computational cost by 20–40%, especially for problems with large fraction of constant regions.
منابع مشابه
Finite-volume Weno Schemes for Three-dimensional Conservation Laws
The purpose of this paper is twofold. Firstly we carry out an extension of the finite-volume WENO approach to three space dimensions and higher orders of spatial accuracy (up to eleventh order). Secondly, we propose to use three new fluxes as a building block in WENO schemes. These are the one-stage HLLC [29] and FORCE [24] fluxes and a recent multistage MUSTA flux [26]. The numerical results i...
متن کاملEssentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws
In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton-Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. ...
متن کاملWLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes
ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes are widely used high-order schemes for solving partial differential equations (PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For structured meshes, these techniques can achieve high order accuracy for smooth functions while being non-oscillatory near discontinuities. For u...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملLax-Friedrichs Multigrid Fast Sweeping Methods for Steady State Problems for Hyperbolic Conservation Laws
Fast sweeping methods are efficient Gauss–Seidel iterative numerical schemes originally designed for solving static Hamilton–Jacobi equations. Recently, these methods have been applied to solve hyperbolic conservation laws with source terms. In this paper, we propose Lax–Friedrichs fast sweeping multigrid methods which allow even more efficient calculations of viscosity solutions of stationary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 46 شماره
صفحات -
تاریخ انتشار 2011